Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina.
نویسندگان
چکیده
GABAergic feedback inhibition from amacrine cells shapes visual signaling in the inner retina. Rod bipolar cells (RBCs), ON-sensitive cells that depolarize in response to light increments, receive reciprocal GABAergic feedback from A17 amacrine cells and additional GABAergic inputs from other amacrine cells located laterally in the inner plexiform layer. The circuitry and synaptic mechanisms underlying lateral GABAergic inhibition of RBCs are poorly understood. A-type and rho-subunit-containing (C-type) GABA receptors (GABA(A)Rs and GABA(C)Rs) mediate both forms of inhibition, but their relative activation during synaptic transmission is unclear, and potential interactions between adjacent reciprocal and lateral synapses have not been explored. Here, we recorded from RBCs in acute slices of rat retina and isolated lateral GABAergic inhibition by pharmacologically ablating A17 amacrine cells. We found that amacrine cells providing lateral GABAergic inhibition to RBCs receive excitatory synaptic input mostly from ON bipolar cells via activation of both Ca(2+)-impermeable and Ca(2+)-permeable AMPA receptors (CP-AMPARs) but not NMDA receptors (NMDARs). Voltage-gated Ca(2+) (Ca(v)) channels mediate the majority of Ca(2+) influx that triggers GABA release, although CP-AMPARs contribute a small component. The intracellular Ca(2+) signal contributing to transmitter release is amplified by Ca(2+)-induced Ca(2+) release from intracellular stores via activation of ryanodine receptors. Furthermore, lateral nonreciprocal feedback is mediated primarily by GABA(C)Rs that are activated independently from receptors mediating reciprocal feedback inhibition. These results illustrate numerous physiological differences that distinguish GABA release at reciprocal and lateral synapses, indicating complex, pathway-specific modulation of RBC signaling.
منابع مشابه
Light-evoked responses of bipolar cells in a mammalian retina.
We recorded light-evoked responses from rod and cone bipolar cells using patch-clamp techniques in a slice preparation of the rat retina. Rod bipolar cells responded to light with a sustained depolarization (ON response) followed at light offset by a slight hyperpolarization. ON and OFF cone bipolar cells were encountered, both with diverse temporal properties. The responses of rod bipolar cell...
متن کاملDiverse mechanisms underlie glycinergic feedback transmission onto rod bipolar cells in rat retina.
Synaptic inhibition shapes visual signaling in the inner retina, but the physiology of most amacrine cells, the interneurons that mediate this inhibition, is poorly understood. Discerning the function of most individual amacrine cell types is a daunting task, because few molecular or morphological markers specifically distinguish between approximately two dozen different amacrine cell types. He...
متن کاملInhibition to retinal rod bipolar cells is regulated by light levels.
The retina responds to a wide range of light stimuli by adaptation of retinal signaling to background light intensity and the use of two different photoreceptors: rods that sense dim light and cones that sense bright light. Rods signal to rod bipolar cells that receive significant inhibition from amacrine cells in the dark, especially from a rod bipolar cell-activated GABAergic amacrine cell. T...
متن کاملInhibition to retinal rod bipolar cells is regulated by light levels 1 2 Running head : Regulation of rod bipolar cell
29 The retina responds to a wide range of light stimuli by adaptation of retinal signaling to 30 background light intensity and the use of two different photoreceptors: rods that sense dim light 31 and cones that sense bright light. Rods signal to rod bipolar cells that receive significant 32 inhibition from amacrine cells in the dark, especially from a rod bipolar cell activated 33 GABAergic a...
متن کاملDevelopment of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific.
Synaptic integration is modulated by inhibition onto the dendrites of postsynaptic cells. However, presynaptic inhibition at axonal terminals also plays a critical role in the regulation of neurotransmission. In contrast to the development of inhibitory synapses onto dendrites, GABAergic/glycinergic synaptogenesis onto axon terminals has not been widely studied. Because retinal bipolar cells re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2010